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1) Introduction  

Big data is generally defined in terms of the volume and variety of structured and 
unstructured information. Whereas structured data is stored in conventional relational 
formats, unstructured data comprises multimedia content such as e-mail, text, social media 
feeds and web pages. The value of this type of information is typically exploited using data 
mining and machine learning techniques, uncovering patterns and predicting customer 
behaviour with results delivered in real or near-real time. Well known examples are Google 
Translate, Autocomplete and the targeting models of Netflix and Amazon, where products 
are recommended based on historical usage patterns.  
 
In the marketing sector the growing wealth of data on individual purchase behaviour, online 
activity, social media and socio-demographic profiles is changing the face of media buying 
and analytics. Firstly, by consolidating the information into single data management 
platforms, media agencies can achieve more granular segmentation of viewing audiences, 
leading to increasing efficiency in digital media buying and targeting.1 Secondly, the sheer 
volume and complexity of available data has prompted an increasing use of machine 
learning methods to generate marketing insights. This typically covers correlation based 
model building, network analysis, consumer segmentation, classification and forecasting. 
 
Against this backdrop, more conventional ‘small data’ analytics such as econometrics and 
marketing mix modelling have taken something of a back seat. This is unfortunate since big 
data should not necessarily be viewed as more accurate with no need for conventional 
interpretation. Data mining techniques for example are ideal for association rule learning, 
where customer purchasing patterns on frequent and jointly purchased products can help 
guide marketing strategy. However, such methods shed little light on underlying data 
generation processes, marketing ROI and the ceteris paribus causal impacts central to 
simulation and scenario planning.2 
 
Consequently, despite the significant role that unstructured big data can play in marketing 
analytics it should not overshadow the importance of traditional analysis of large structured 
data sets. The key is to build analytical frameworks that can harness the value of increasing 
data size, yet retain the benefits of sound economic theory and valid causal inference. This 
is the domain of Big Data econometrics. 
 

                                                           
1
 Improved targeting in this way is analogous to the Amazon and Netflix models. Note, however, that data 

management platforms are essentially treated as if they were single-source consumer panels across all off and 
online touchpoints. This is a strong assumption as we are attempting to combine a mass of highly granular 
disparate information based on varying consumer samples coupled with multiple online platform usage. 
2
 Note, however, that machine learning techniques often play a key role in Bayesian network analysis to 

uncover off and online consumer purchase journeys. Results are often given a causal interpretation and used 
for simulation and marketing budget optimisation.   
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2) Structured data sets in marketing 

The size of any data set is essentially driven by the level of disaggregation over products 
(depth) and time (frequency) together with the number of variables involved (variety). 
Figure 1 illustrates a typical case, representing various levels of granularity.  
 

Figure 1: Longitudinal data structure 
 

 
 
Figure 1 splits market level sales over time into cross-sections where each block depicts a 
time series of consumer demand for each product-channel-regional combination. Sales 
channels may be further divided into stores or individual customers. Coupled with 
information on pricing, promotion, offline media plus customer attributes and profiles, the 
size of the data set starts to expand significantly. 
 
The digital revolution has only exacerbated this problem, leading to a proliferation in the 
volume and variety of online information such as web traffic by source, natural and paid 
search behaviour by platform, display exposure and social media feeds – much of which is 
available at individual consumer level by day. Merged with offline data to create a holistic 
view of consumer demand creation, we truly are in the realms of Big Data. 
 
Econometric analysis of such data brings two broad challenges. Firstly, the consumer 
purchase journey is much more complicated, with an increasing number of endogenous 
outcome variables to deal with. As a result, accurate off and online marketing attribution is 
more demanding as set out in my previous article Advanced Methods in Marketing 
Econometrics. Secondly, as the number of dimensions illustrated in Figure 1 grows, so too 
does the number of detailed marketing response parameters that businesses require. 
Obtaining stable results using conventional methods is increasingly difficult. In this article, I 
look at some common approaches that help resolve this dimensionality problem.  
 
 
 

http://www.marketscienceconsulting.com/wp-content/uploads/2012/10/Advanced-methods-in-Marketing-Econometrics_Final.pdf
http://www.marketscienceconsulting.com/wp-content/uploads/2012/10/Advanced-methods-in-Marketing-Econometrics_Final.pdf
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3) Conventional disaggregated data analysis  

Analysis of disaggregated data sets is very common in marketing analytics. Rather than 
estimate one product, one cross section at a time, it is preferable to take advantage of the 
longitudinal structure, stack the data and estimate all dimensions simultaneously. Typically, 
we are seeking to quantify cross sectional deviations (interaction effects) from the market 
mean or base level of response (main effect). This can be seen as analogous to data mining 
techniques such as CHAID and helps improve targeting of marketing investments. To 
illustrate the issues involved, consider the data structure for Figure 1 expressed in stacked 
form as follows: 
 

                                                                                                                                                (1) 
 

Where i = 1-N denotes the defined cross-sectional unit, t = 1-T denotes the time period, yit, 
denotes a vector of dependent variables for product or brand sales,     denotes a row 
vector of K current and lagged explanatory variables for cross-section i,    is a K-vector of 
response coefficients and εit represents a vector of error terms. Specific intercepts or fixed 
effects are typically added to each row to account for mean cross-sectional differences. 
 

Appropriate estimation of (1) depends on the properties of the error structure, both within 
and across cross-sections. Classical Ordinary Least Squares (OLS) requires that the error 
covariance matrix of the ith cross section satisfies the standard assumptions of constant 
variance and zero serial correlation: 
 

 
 

With zero contemporaneous error correlation across cross-sections:  
 

 
 

OLS estimation of (1) provides the coefficient vector i, with marketing response estimates 
specific to each cross-section i. In circumstances where (2) and (3) do not hold, Generalised 
Least Squares (GLS) approaches are typically applied. This uses OLS to estimate the relevant 
error structures and transform the data such that (2) and (3) are then applicable.3 
 

4) Big Data approaches 

As modern data sets burgeon in size, obtaining reliable detailed marketing response 
information can be challenging. Full interaction time series-cross sectional approaches such 
as model (1) are often unstable as the number of dimensions and parameters increase, 
delivering many zero and/or incorrectly signed effects. A natural solution to this 
dimensionality problem is to reduce the number of estimated parameters, thereby 
increasing the available degrees of freedom. 
                                                           
3
 Incorporating digital media into equation (1) requires a model of the off and online consumer purchase 

journey. Consequently, endogenous outcome variables such as web traffic typically appear as explanatory 
variables. Under these circumstances, alternative instrumental variable estimation techniques are required.  
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The simplest approach is to aggregate and reduce the size of the data set. This is a fairly 
common practice: big data challenges often revolve around storage issues in the first 
instance but, once processed, data are aggregated to simplify analysis. In marketing 
analytics, behaviour is often summed over time to a weekly frequency and attention is 
focused on average relationships across brands and sales channels.  
 
Valid aggregation, however, requires quite specific assumptions about consumer behaviour 
(Deaton and Muellbauer, 1980). Furthermore, if the demand relationships are non-linear at 
granular levels then application of these same forms to linearly aggregated data results in 
bias. Consequently, alternative methods are required to handle increasing data size and 
granularity that obviate the need for aggregation over product and consumer dimensions.4  
 

i) Classical pooling  

The most basic approach is to pool the data. This provides a single average response 
coefficient β for each relevant explanatory variable in model (1). The downside is that this 
ignores response heterogeneity over cross-sections and is of little use to media planners and 
budget holders seeking guidance on media targeting at regional level. This can be remedied 
by regional pooling, but at the cost of increasing the number of parameters whilst still 
imposing homogeneity across products and consumers. 
 

ii) Hierarchical Bayes 

A more flexible technique is to introduce random coefficients. Equation (1) is the typical 
structure of the classical or frequentist approach to statistics, where the model parameters 
are regarded as unknown fixed quantities to be estimated from the data. In the Bayesian 
approach, parameters are viewed as unknown outcomes of a random process determined 
by another higher level joint distribution. In the context of Figure 1, this assumes that each 
cross sectional coefficient is drawn from a population distribution shared by all the cross-
sections. This is a strong assumption, but leads to a dramatic reduction in the number of 
estimated parameters. For example, consider model (1) re-written as follows. 
 

                
                                                                                                                    

                      
                                                                                                                                
                
 

              
 

Where equation 1(a) represents each cross-sectional (micro) model and equation (4) 
represents the higher level (macro) distribution for coefficients βi with mean β and error    - 
denoting the random spread around the mean. It is this micro and macro view that gives the 
model its hierarchical structure. Combining 1(a) and (4) leads to model (5), with a composite 
error term    . Covariance matrix (2) then becomes: 

                                                           
4
 Given the increased storage needs and computational complexity involved in big data sets, these methods 

often deploy sparse matrix techniques to facilitate large scale modelling and optimisation. 
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 (5) 

 (6) 

(1a) 
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(1a) 
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The error covariance matrix of each cross-section is now a function of both the variance (  

 ) 
and the parameter spread over cross-sections ( ). The balance between the two determines 
the estimated βi coefficients and reveals the distinctly Bayesian nature of the approach. A 

high value of   
  relative to   implies relatively imprecise cross-sectional estimates. 

Consequently, the data have little to offer and the individual βi values are shrunk towards 

the pooled (prior) mean value. Conversely, where   
 is low relative to   so the sample data 

are more informative and the cross-section specific estimates dominate with minimal 
shrinkage. In this way, the HB estimator is essentially a weighted average of the pooled and 
cross-sectional estimates.5 
 

The hierarchical structure of model 1(a) – (6) indicates that coefficients by cross-section can 
be obtained simply through knowledge of the mean and variance of the macro distribution 

(4) plus the error variance   
  of the micro model 1(a).6 This is far more parsimonious than 

the classical approach and often seen as a distinct advantage in the face of modern large 
data sets. Parameter estimation sets the mean of the macro distribution to the market level 
(pooled) estimate and the variance is derived from the global spread of the individual cross-
section parameter estimates.7 Alternatively, where systematic regional differences are 
known to exist, it is preferable to set regional mean priors via pooling across products and 
chains, with variances estimated using intra-regional coefficient spreads.8 
 

iii) Attribute based models 

Our third example is based on the economics of how consumers shop for products. 
Marketing mix models are based on conventional microeconomic demand theory, where 
consumer preferences are defined over the individual products themselves. However, an 
alternative approach defines preferences across higher level product attributes and 
characteristics (Lancaster, 1971). For example, the television category can be divided into 
brand, screen size and technology and further divided into brand name, dimensions and 
LCD/LED/Plasma/3D. Provided that there is a sufficient level of commonality in attributes 
and characteristics across the category, a complete product (SKU) level data set can be fully 
described over a significantly reduced number of dimensions.  
                                                           
5
 Note that as the number of time series observations increases, so the Hierarchical Bayesian result converges 

to the classical cross-sectional specific estimates. 
6
 The Hierarchical Bayesian model essentially assumes that cross sectional differences are driven by chance. 

However, practitioners typically interpret and use them in exactly the same way as standard systematic fixed 
coefficients. Strictly speaking this is invalid, but can be alleviated by introducing time invariant fixed factors for 
cross-section i into equation (4) as discussed in Western (1998). 
7
 The Hierarchical Bayesian model is identical to the fixed effects model in calculating cross sectional specific 

coefficients. However, these estimates are purely an intermediate step and only used to calculate the 
covariance matrix  . 
8 This estimation approach is known as Empirical Bayes. Pure Bayesian approaches set priors independently of 

the data and represent an increasingly popular method of introducing user-control into marketing mix 
modelling. A prior for β allows us to set the mean value of the macro distribution to externally given values. 
This is particularly useful if we wish to constrain parameters to be positive or negative and/or set values 
consistent with previous studies. Priors for the coefficient dispersion (covariance) matrix   then allow control 
over the degree of shrinkage around the mean. 
 

𝐸  𝑖𝑡 𝑖𝑡
′  = 𝐸       +  𝑖𝑡       +  𝑖𝑡 

′   =   𝑖
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An application of the characteristics approach to demand in the marketing literature can be 
found in Fader and Hardie (1996) and represents a highly efficient method of parameter 
reduction. In practice, it is common to combine this approach with the Hierarchical Bayesian 
technique for even greater parsimony as data sets expand in size. 
 

5) Concluding remarks 

In the wake of the Big Data revolution, analytical methods such as data mining and machine 
learning have taken centre stage in unstructured data analysis. Although such methods are 
highly useful in marketing analytics, it is important not to lose sight of the distinct 
advantages of ‘small’ structured data methods such as econometrics which play a key role in 
marketing ROI, simulation and causal based inference. 
 
In order to handle increased data size and complexity, econometric analysis often 
aggregates the data to more manageable proportions. However, this loses the value that 
modern data granularity has to offer. This article has looked at three common techniques 
that help avoid excessive aggregation. Each approach essentially constitutes an alternative 
method of data pooling, enabling a significant reduction in the number of specified 
parameters. Coupled with sparse matrix forms for efficient storage and estimation, such 
model structures are well placed to handle the Big Data challenge. 
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